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Abstract

Coupled free vibration analysis has been performed on a cantilever thin plate carrying a spring–mass
system attached on an arbitrary point by using Rayleigh–Ritz method. Influence of an attached ‘spring–
mass’ system, i.e., attached position, relative values of mass and spring constant, on the coupled vibration
characteristics of the system has been clarified comparing with those of uncoupled ones. Optimal attached
position to maximize coupled plate natural frequency is also investigated and shown in contour diagrams.
The influence of an attached mass has also been investigated, as the limiting case whereby the spring
stiffness of the ‘spring–mass’ system approaches infinity.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Dynamic analysis of structures is indispensable in their safety design for earthquakes, fatigue
and environmental problem such as noise. The structure is usually modelled as uniform plate or
shell, however, in practice, it has varying thickness, or non-uniform material property, or it is
locally stiffened, or is added to another part, or is connected with other structures. Then, a more
realistic model has been investigated, i.e., as a structure which has added mass, added constraints,
or added sub-dynamical system.
Among these studies on beams, as a simplest structural component, Young [1] treated a beam

with mass, spring and dashpot. Laura et al. [2] studied free and forced vibrations of a simply
supported beam and a rectangular plate carrying elastically mounted mass. Dowell [3] studied
general properties of a combined dynamical system, in which he treated three examples, i.e.,
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simply supported beam with mass which is supported by spring, simply supported beam
with spring–mass system, and two beams crossing crosswise. Nicholson and Bergman [4]
considered a cantilever beam which is supported by mass–spring systems at some points,
or to which some mass–spring systems are added. They used the Green function method
to obtain natural frequency equation. Rossi et al. [5] treated Timoshenko beam with both
simply supported, simply supported-clamped, and both clamped ends. Posiadala [6] used
Lagrange multiplier method to analyze a simply supported beam supported by a spring
at its span, or simply supported two span beams to which one mass–spring system is
added. He got natural frequency parameters and showed them in frequency parameter
diagrams. G .urg .oze [7] used Lagrange multiplier method for a cantilever beam with tip mass
when it has a mass–spring at the free end, or the free end is supported by spring, to obtain natural
frequencies.
Das and Navakatna [8] extended Young’s study [1] to a simply supported rectangular plate at

which one point is supported by a mass–spring system. Snowdon [9] studied forced vibration of a
simply supported rectangular plate with an added mass or with a mass–spring–dashpot system,
and obtained force transmissibility and driving-point impedance of a plate. Nicholson and
Bergman [10] extended their study [8] to a plate system. Trentin and Guyader [11] used modal
sampling method to study response of a plate at medium frequency range in which a large number
of modes exist. Similar problem for a plate with mass–spring system was analyzed by Dowell and
Tang [12] by using asymptotic modal analysis. Cha and Wong [13] presented a method to analyze
combined dynamical system and compared the results with those by the Lagrange multiplier
method, and the Green function method. In the optimization problem, to maximize the
fundamental natural frequency by adding support springs, Won and Park [14] treated cantilever
beam and plate.
In these studies, influences of added mass, added spring support, or added spring–mass have

been treated. The obtained results, however, are presented in the form of frequency equation, or
at most natural frequencies in tables or some graphs, which do not give enough information as
engineering design data.
In the present study, we shall treat a cantilever plate attached by a ‘spring–mass’ system, and

systematically clarify the coupled vibration characteristics of the system by thoroughly studying
the effects of the ‘spring–mass’ attachment. Rayleigh–Ritz method is used in the derivation of the
frequency equations.

2. Basic equation

We shall consider coupled free vibration of a thin cantilever plate attached by a ‘spring–mass’
system. Cartesian co-ordinate system x–y is taken as shown in Fig. 1. The plate is thin and
isotropic, and has width H; length L; and thickness h:While the ‘spring–mass’ system has a spring
constant ke and mass me; and is attached to (x0; y0) on the plate. Displacements of the plate and
mass are represented as W ðx; y; tÞ and zðtÞ respectively. Here, we shall employ the classical plate
theory.
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For linear free vibration of the coupled system, strain energy U and kinetic energy T are
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where r and D are the density and the flexural rigidity of the plate, respectively. We assume that
the system vibrates with circular frequency O as

W ðx; y; tÞ ¼ wðx; yÞeiOt; ð3Þ
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Then, Eqs. (1) and (2) lead to
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Fig. 1. Cantilever plate with ‘spring–mass’ system.
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The Lagrangian of the system is
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Here, we shall introduce non-dimensional parameters
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where l is the aspect ratio of the plate, ame and ake are the mass ratio and the stiffness ratio
between the ‘spring–mass’ system and the plate. Then, Eq. (7) is represented as
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3. Method of solution

The displacements of the plate and attached mass are assumed to be of the forms

%wðx; ZÞ ¼
X

m

X
n

amnFmðxÞCnðZÞ;

z ¼ b; ð10Þ

where amn and b are the unknown parameters. FmðxÞ andCnðZÞ are the admissible beam functions,
which satisfy clamped–free boundary conditions and free–free conditions, respectively, which are
defined as follows:

FmðxÞ ¼ mmðcosh amx� cos amxÞ � nmðsinh amx� sin amxÞ ðm ¼ 1; 2; 3;yÞ;

mm ¼
cosh am þ cos am

sinh am sinam

; nm ¼
sinh am � sin am

sinh am sin am

; ð11Þ

where am are the roots of

cosh am cosam ¼ �1; ð12Þ

a1 ¼ 1:875; a2 ¼ 4:694; a3 ¼ 7:854;y for clamped–free beam function;

C1ðZÞ ¼ 1;
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b3 ¼ 4:730; b4 ¼ 7:853; b5 ¼ 10:995;y for free–free beam function.
Substituting Eq. (10) into Eq. (9), and applying Rayleigh–Ritz method, we can derive the

natural frequency equation in a matrix form as
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from which one can get coupled natural frequencies as eigenvalues, and vibration modes as
eigenvectors. K and M are square matrices with size ð1þ m 
 nÞ 
 ð1þ m 
 nÞ: Details of the
derivation of Eq. (15) are in Appendix B.

4. Numerical results

The present plate – ‘spring–mass’ coupled dynamical system can be represented by four system
parameters: aspect ratio of a plate l � L=H; stiffness ratio ake � keL

2=D; mass ratio ame �
me=rHhL; and attached position of a ‘spring–mass’ system (x0; Z0). Numerical calculations have
been carried out varying these system parameters to clarify the influence of attached ‘spring–mass’
system on the coupled dynamical characteristics of a plate. The Poisson ratio n was taken as 0.3.
In the calculation, unknown terms in Eq. (15) were taken up to m ¼ n ¼ r ¼ s ¼ 7; to get reliable
values as engineering data.

M. Chiba, T. Sugimoto / Journal of Sound and Vibration 260 (2003) 237–263 241



4.1. Uncoupled vibrations of plate and ‘spring–mass’ system

First, we shall see the uncoupled vibration characteristics of a plate and a ‘spring–mass’ system
respectively. Variations of uncoupled natural frequencies of a cantilever plate o0 with aspect ratio
l are shown in Fig. 2. For convenience, vibration modes when l ¼ 4:0 are presented in the right-
hand side of the figure. In general, natural frequencies that have nodal line in vibration mode
perpendicular to the plate axis ðxÞ are nearly constant with l; while those which have nodal line
parallel to the plate axis increase with increase in l:With the variation of l;mode exchange can be
observed. Furthermore, one can recognize the veering and crossing of the frequency curves [15,
16]. In order to distinguish these two, step size for l in the numerical calculation was taken to be
small as much as possible. More details on frequency curve’s veering and crossing in a cantilever

Fig. 2. Uncoupled natural frequency of a plate with aspect ratio l:
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plate have been studied in Ref. [17]. In Fig. 3, the lowest five vibration modes are presented for
three kinds of aspect ratio l=0.5, 1 and 2, which show mode change with l:
Uncoupled natural frequency variations of the ‘spring–mass’ system alone with mass ratio ame

are presented in Fig. 4, for stiffness ratio ake=0.1, 1, 10, 100, and l=1, 2, 3. In this case,
uncoupled natural frequency of the ‘spring–mass’ system is given by osp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akel=ame

p
from

Eq. (15). It decreases with increase in the mass ratio ame and increases with increase in the stiffness
ratio ake: In the figures shown hereafter, uncoupled natural frequency of the ‘spring–mass’ system
is represented by dashed line, for reference.

4.2. Coupled system

4.2.1. Influences of ake and ame

For a square plate with l ¼ 1:0; coupled natural frequency o2ame diagrams have been
obtained, changing the attached position of the ‘spring–mass’ system as (x0; Z0)=(0.5, 0.3), (1.0,
1.0), (0.5, 0.5), (1.0, 0.5) as shown in Fig. 5. In Fig. 6, as one of the examples, the results for
(x0; Z0)=(0.5, 0.5), i.e., the ‘spring–mass’ system is attached on the middle of the plate, are
presented when ake=0.1, 1, 10, 100. In the figures, one dotted line corresponds to the uncoupled
natural frequencies of a plate without ‘spring–mass’ system, oo: there exist four uncoupled natural
frequencies below o ¼ 30: Dashed curve corresponds to the natural frequency of an uncoupled
‘spring–mass’ system osp; which depends on both ake and ame as shown in Fig. 4. This curve
appears in the diagram for lower ame region below the first mode of the plate when ake ¼ 0:1:
Fig. 6(a), in this case, it is nearly coincident with a coupled natural frequency curve. With increase
in ake; uncoupled natural frequency osp increases and the number of the interactions with
uncoupled plate frequency lines increase, in which strong couplings are expected in these regions.
Dowell [3] noted in his paper on dynamical coupling of a beam with spring–mass system, that ‘if

a spring–mass oscillator is attached to another system, a new natural frequency appears between
the original pair of frequencies nearest to the oscillator natural frequency’. In the present system,
although the treating system is not the same, the same conclusion can be obtained, as will be
illustrated in Fig. 6.
Then, we shall see the influence of the stiffness ratio ake (� keL

2=D). When ake is small as 0.1
(Fig. 6(a)), i.e., the stiffness of the attached ‘spring–mass’ system is relatively smaller than that of a
plate, the lowest coupled natural frequency corresponds to the vibration mode in which the
motion of the ‘spring–mass’ system is predominant. And the higher modes correspond to those in
which plate motion is predominant. This means that the coupling is weak, in these cases.
With increase of ake to 1 (Fig. 6(b)), coupling between the plate and the ‘spring–mass’ system

can be recognized at the regions ame ¼ 0:01 and 0.1, i.e., with the first and the second plate modes;
while in the other regions in the graph, there seems no influence of the attached ‘spring–mass’
system. As variations of frequency curve with ame; one can see that the frequency curve of a plate
is forced to bend or is strongly influenced by that of the ‘spring–mass’ system.
On further increase in ake to 10 (Fig. 6(c)), the coupling regions become wide, i.e., with the first,

second, third and fourth plate modes. It is to be noted here that as ame increases, the natural
frequency curve of the first plate mode tends to that of the uncoupled ‘spring–mass’ system. While
natural frequency curve for the second plate mode tends to that of the first plate mode, but the
value is a little higher than that of the first uncoupled plate mode. Similarly, natural frequency
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Fig. 3. Vibration mode variation of a cantilever plate with aspect ratio l : l=0.5, 1, 2.
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curve for the third plate mode tends to that of the second plate modes. Such variations can be seen
more clearly when ake ¼ 100; Fig. 6(d).
To understand these phenomena from another point of view, we then see the influence of the

attached ‘spring–mass’ system on the vibration mode, instead of just concentrating on at the
frequency curve variation. As an example, vibration modes are shown in Fig. 7(a) as contour
diagrams, and in Fig. 7(b) as cross-sectional diagrams along the center axis of a plate (Z ¼ 0:5)
when ake ¼ 10; which corresponds to Fig. 6(c). In these figures, the maximum displacement of the
plate or attached mass is normalized to unity, and we use the order of vibration mode according
to the order of the frequency magnitude, i.e., the first, second y .
Let us look at the results when ame ¼ 0:01; i.e., the first column of Fig. 7(a) and (b), and the left-

hand side of Fig. 6(c). In this case, mass ratio ame (� me=rHhL) is small, i.e., attached mass is
relatively smaller than that of the plate, the displacement of the attached mass is same as that of
the plate at the first, second and fifth modes, except third and fourth modes in which the influence
of ‘spring–mass’ system is significant. Here, we have to note that in the second and fifth modes,

Fig. 4. Uncoupled natural frequency of a ‘spring–mass’ system: l=1, 2, 3, ake=0.1, 1, 10, 100.

Fig. 5. Attached position (x0; Z0) of a ‘spring–mass’ system on the plate.
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the ‘spring–mass’ system is attached just on the vibration mode, so that the coupling may be very
weak.
With increase in ame; the lowest coupled vibration mode, i.e., the first mode, changes from the

first plate mode to the ‘spring–mass’ system predominant mode, while the second mode changes
from the second plate mode to the first plate mode. As mentioned previously, natural frequencies
of the second vibration mode with large ame(=1, 10, 100) are a little higher than that of the
uncoupled plate. This can be clearly explained by looking at Fig. 7(b), i.e., the displacements of
the plate and mass are not the same which makes the spring’s elongation increase the natural
frequency in these modes. This is also true for the fourth mode.

4.2.2. Influence of attached position (x0; Z0) of a ‘spring–mass’ system

To consider the influence of the attached position of a ‘spring–mass’ system, the results when
the ‘spring–mass’ system is attached to the other position ðx0; Z0Þ=(1.0, 1.0), i.e. the ‘spring–mass’
system is attached to the free end corner of a plate, are presented in Figs. 8 and 9. Adding the
‘spring–mass’ system out of the centerline of the plate width, vibration mode becomes asymmetric
as shown in Fig. 9(a), i.e., the nodal line parallel to x axis is shifted to the attached direction of the

Fig. 6. Variation of coupled natural frequencies with ame: - � - � - � -, oo; - - - - -, osp; l=1, (x0; Z0)=(0.5, 0.5), ake=0.1,

1, 10, 100.
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system on the plate. Furthermore, the natural frequencies of the second, third and fifth modes
become higher than those of the uncoupled ones in the range ame ¼ 0:1B100; because of the
restriction of the plate displacement where maximum displacement occurs, i.e., free end of the
plate, which makes the maximum displacement at the opposite end corner of the plate.

Fig. 7. Variation of vibration mode with ame; l=1, ake=10, (x0; Z0)=(0.5, 0.5): (a) contour diagram; (b) sectional mode

along Z0 ¼ 0:5:
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We cannot present all the calculated results for other attached positions for the limited space.
The influence of the attached ‘spring–mass’ system can summarized as follows:

1. When the attached position coincides with the vibration node of a plate at its jth normal mode,
there is no movement of the attached mass, which makes no change in the plate jth natural
frequency.

Fig. 7 (continued).
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2. With increase in ake and ame; movement of the plate is constrained by the attached system that
decreases the displacement of plate at that point and increases the coupled natural frequency.

3. When the stiffness ratio ake is as small as 0.1, the influence of the attached system at any point
on a plate is small, independent of the ame value.

4.2.3. Maximizing natural frequencies

In the previous section, coupled vibration characteristics have been investigated for the plate
with l ¼ 1; showing the frequency diagrams and the vibration modes. In this section, we shall
focus on the effect of the attached ‘spring–mass’ system on the natural frequency of a cantilever
plate.
At the beginning, we treat here again a plate with l ¼ 1 and the lowest three vibration modes

shown in Fig. 3. Changing the parameters ake and ame as 1, 10, 100 and attached position (x0; Z0)
of the ‘spring–mass’ system, natural frequencies have been calculated and are shown in Fig. 10. In
each diagram, the position Z0 is presented in the abscissa, while the natural frequency ratio o=o0

normalized by that of a plate without attached system o0 is shown in the ordinate. And ‘Mode 1’,

Fig. 8. Variation of coupled natural frequencies with ame; - � - � - � -, oo; - - - - -, osp; l=1, (x0; Z0)=(1.0, 1.0), ake=0.1,

1, 10, 100.
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‘Mode 2’, and ‘Mode 3’ correspond to the lowest three vibration modes shown in Fig. 3 when
l ¼ 1:
We will see first Mode 1 which are shown in the lowest diagram in Fig. 10, and when ake ¼

ame ¼ 1: Although the influence of the attached system on the vicinity of a clamped end as
x0 ¼ 0:2 and 0.4 is small, that on the free end of the plate, i.e., x0 ¼ 1:0; is significant which
increases the natural frequency. Curve when x0 ¼ 0:2 for ake ¼ ame ¼ 1 nearly coincides with the

Fig. 9. Variation of vibration mode with ame; l=1, ake=10, (x0; Z0)=(1.0, 1.0): (a) contour diagram; (b) sectional mode

along Z0=1.0.
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Z0 axis. Consequently, the maximum natural frequency ratio of factor 1.16 is obtained when
(x0; Z0)=(1.0, 0.5), i.e., when the ‘spring–mass’ system is attached to the middle free end of the
plate. The reason why the maximum cannot be obtained at the position (x0; Z0)=(1.0, 0) or (1.0,
1.0), i.e., at the free end corners, may be considered because the displacement of the other free end
corner becomes large when the ‘spring–mass’ system attaches to one of the free end corners, as
shown in Fig. 9(a), which has a lower natural frequency than that of the mode when the corner is
constrained. With an increase of ake and ame; shown in Fig. 10(b) and (c), the factor of the
frequency ratio increases, for example up to 2.5 when ake ¼ ame ¼ 100: In order to grasp these

Fig. 9 (continued).
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more clearly, the above results are represented in two-dimensional contour diagrams in Fig. 11,
from which we can see the above visually.
Next, we will see Mode 2. In this case, since the vibration mode has a nodal line in the middle of

the plate, i.e., Z0 ¼ 0:5; there is no influence of the attached system on the nodal line (Z0 ¼ 0:5).
The effect becomes stronger as the attached position moves to the free end side from the nodal
line, or as it moves to the free end from the clamped side. And the maximum occurs at the free end
corner of the plate. However, with increase of ake and ame; this point moves away from the free
end corner to the interior region of the plate as shown in Fig. 11(c), which is due to the change of
the vibration mode according to the increase of ake and ame:
As for Mode 3, the frequency ratio locally takes its maximum when the added system is either

on the middle end side of the plate Z0 ¼ 0:5 or on the middle of the free end when ake ¼ ame ¼ 1

Fig. 10. Frequency ratio o=o0with attached position (x0; Z0), l=1: (a) ake ¼ ame ¼ 1; (b) ake ¼ ame ¼ 10; (c) ake ¼
ame ¼ 100:
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and 10, and the former moves to x0 ¼ 0:4 or 0.6 when ake ¼ ame ¼ 100; from which we can see
that this mode has vibration characteristics of both Mode 1 and Mode 2.
Here, it should be noted that we put ake and ame values to be equal, and changed their values,

but ake is the predominant parameter in this characteristic. As an example, similar results when
keeping ake ¼ 1:0 and varying ame as 1, 10, 100 are shown in Fig. 12, in which there seems no
influence of ame:

4.2.4. Influence of aspect ratio l
So far, we have considered a square plate with l ¼ 1:0: Now, we shall examine the effect of

aspect ratio l on the coupled natural frequency ratio. In Fig. 13, the results are presented for
l ¼ 0:5; 1, 2, 3, when ake ¼ ame ¼ 1: (a) and ake ¼ ame ¼ 100: (b). For Mode 1, the attached point
which makes the plate to have the maximum frequency ratio is the middle free end, independent of
l when ake ¼ ame ¼ 1; while this point moves inward the plate on a centerline when ake ¼ ame ¼
100:
As for Mode 2, this point moves from the free end corner to the clamped side along the free side

edge with increase in l; when ake ¼ ame ¼ 1 and 100.

Fig. 11. Frequency ratio o=o0 with attached position (x0; Z0), l=1: (a) ake ¼ ame ¼ 1; (b) ake=ame=10; (c)

ake=ame=100.
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4.2.5. Plate with attached mass
In the present study, we can reduce the ‘spring–mass’ added system to a plate with only ‘mass’

added system by letting ake-N: In Fig. 14, the coupled natural frequency variations with ame are
presented when (x0; Z0)=(0.5, 0.5) for ake=10, 100, 200, 103, 105. From the figure, we found that
with increase in ake; the natural frequency curves shift to the right-up direction in the diagram and
tends to solid lines which correspond to ake ¼ 105: In the figure, the horizontal dot-dashed lines
correspond to the uncoupled natural frequency without added mass, o0: One can see that the
natural frequencies for the first, third, fourth modes, except the second and fifth modes,
monotonically decrease with increase of ame: The reason why the second and fifth modes remain
constant with ame is that the added position (x0; Z0)=(0.5, 0.5) just corresponds to the nodal line.
As an example of the vibration modes when only ‘mass’ is added on a square plate are shown in
Fig. 15(a): ame ¼ 0:01; and in Fig. 15(b): ame ¼ 10; when (x0; Z0)=(1.0, 1.0) and ake ¼ 1010:
Comparing with the results of the ‘spring–mass’ added system in Fig. 9, coupled vibration modes
in which displacement of the ‘spring–mass’ system is predominant disappeared, and the mass and
plate undergo the same motion at the attached position. Increasing ame (Fig. 15(b)), displacement
of the plate is reduced at the mass attached position and this point becomes the nodal point of
vibration.

Fig. 12. Influence of ame on frequency ratio o=o0; l=1, ake=1.
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Fig. 13. Influence of aspect ratio l on frequency ratio o=o0: (a) ake ¼ ame ¼ 1; (b) ake ¼ ame ¼ 100:
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Next, we shall examine the natural frequency variations with the ‘added mass’. Calculations
have been carried out for l=0.5, 1, 2, ame=0.01, 0.1, 1, 10, 100, and ake ¼ 1010: Contrary to the
‘spring–mass’ added system, the natural frequency of the plate only decreases with the ‘added
mass’, and we will examine the minimum natural frequency here. In Fig. 16, the minimum natural
frequency ratio omin=o0 with ame are shown for Mode 1: (a) and Mode 2: (b), and it decreases with
increase in ame and the effect of the aspect ratio of the plate l is different for both Modes 1 and 2.
Contour diagrams of the natural frequency ratio for the Modes 1 and 2 are presented in Fig. 17,
when l ¼ 1:0:When ame ¼ 0:01; the minimum natural frequency can be obtained when the mass is
attached to the free end side of the plate for Mode 1, and to the free end corner for Mode 2. With
increase in ame this point moves inward the clamped direction along the free end sides for Mode 2.
For a plate with a different aspect ratio, similar results have been obtained.
So far, we got the coupled natural frequency of the plate which is either higher or lower than the

uncoupled one when the ‘spring–mass’ system is added on the plate. However, we get only the
lower coupled natural frequency when only the ‘mass’ is attached to. Now, we have to consider
the difference of the two cases. Let us see, for example, Fig. 18 which is the result when
(x0; Z0)=(0.5, 0.5), ake ¼ 10: If one chooses the system parameters ake and ame in the right-hand
side region of the uncoupled frequency curve of the ‘spring–mass’ system osp or in the larger
region than this curve, and increases ame; the coupled natural frequency decreases exchanging
vibration mode with that of the ‘spring–mass’ system, and becomes higher than that of the
uncoupled one. While if one chooses the system parameters in the left-hand side of the uncoupled
frequency curve, there exist no mode exchange and the coupled plate frequency decreases with

Fig. 14. Variation of natural frequency for only ‘mass’ attached system with ame for ake ¼ 10; 100, 200, 103, 105,
(x0; Z0)=(0.5, 0.5).
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increase in ame: Then, if we put ake-N and get rid of the spring effect, uncoupled frequency curve
of the ‘spring–mass’ system moves to the right-up region in the o2ame diagram, so that the left-
hand side region becomes relatively wider, in which the natural frequency only decreases.

Fig. 15. Vibration mode for ‘mass’ attached system, (x0; Z0)=(1.0, 1.0), l=1, ake ¼ 1010: (a) ame=0.01; (b) ame=10.
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5. Conclusions

The coupled free vibration analysis has been performed on a thin cantilever plate carrying a
‘spring–mass’ system on an arbitrary point by using Rayleigh–Ritz method. Influence of the
attached ‘spring–mass’ system, i.e., attached position (x0; Z0), stiffness parameter ake; mass ratio

Fig. 17. Influence of ame on frequency ratio of ‘mass’ attached system, ake ¼ 1010; l=1.

Fig. 16. Minimum natural frequency with ame; l=0.5, 1, 2: (a) Mode 1; (b) Mode 2.
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ame; and aspect ratio l of the plate, on the vibration characteristics of the coupled system has been
clarified. The obtained results from the present paper can be summarized as follows:
(I) Coupled natural frequency

1. Uncoupled natural frequency of the ‘spring–mass’ system is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ake=ame

p
:

2. In the left-hand side region of an uncoupled natural frequency curve of the ‘spring–mass’
system in the o2ame diagram, coupled natural frequency is lower than the uncoupled plate
frequency, while in the right-hand side of the curve, it is higher, due to the crossing the
frequency curves of the uncoupled ‘spring–mass’ mode and that of the uncoupled plate mode.

3. When one looks at the coupled natural frequencies as Dowell [3], the same conclusion can be
obtained as ‘if a spring–mass oscillator is attached to another system, a new natural frequency
appears between the original pair of frequencies nearest to the oscillator natural frequency’.

4. When the ‘spring–mass’ is added to a plate just on vibration node at its jth normal mode,
coupled jth natural frequency is not changed.

(II) Vibration mode

5. In the vicinity of the natural frequency of the uncoupled ‘spring–mass’ system, coupled system
exhibits motion in which the ‘spring–mass’ is predominant, while in that of uncoupled plate,
coupled system exhibits motion in which the plate motion is predominant. At the crossed
region of both curves, strong coupling between the plate motion and the ‘spring–mass’ motion
occurs.

Fig. 18. Natural frequency variation with ame; ake=10, (x0; Z0)=(0.5, 0.5).
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6. When the stiffness parameter ake becomes large, the effect of spring reduces, and the effect of
added mass is significant which constrains the motion of the plate at that point.

7. When the ‘spring–mass’ is added on the nodal line, there is no effect on the vibration mode of
the plate.

(III) Natural frequency ratio depending on attached position
When system parameters lie in the right-hand side of the natural frequency curve of the ‘spring–

mass’ system in the o2ame diagram:

8. When the aspect ratio l is smaller than 1.0, attached position which gives the maximum
coupled natural frequency depends on ake; when ake is small that point corresponds to the
maximum displacement at each vibration mode, while when ake becomes large it moves from
the middle of the free edge to the inward to the clamped side for Mode 1, and moves from free
end corners to the clamped side along the free side edge.
When the aspect ratio l is larger than 1.0, that point moves from the edge side to the interior
of the plate with increase in ame and ake for Mode 2.

9. Coupled natural frequency ratio mainly depends on ake than ame:

When only a mass is attached on a plate:

10. Letting the spring stiffness approaches infinity reduces the coupled plate frequency due to the
added-mass effect.

11. When the aspect ratio is smaller than 1.0, the reduction rate of the plate natural frequency
becomes large in Mode 1, while it becomes small in Mode 2, in comparison with that
of l=1.0. On the other hand, these turns reverse when the aspect ratio becomes larger
than 1.0.

12. For Mode 1, with increase in ame; added position which makes minimum natural frequency of
the system moves from the free end corner to the clamped side direction along the free edge
side. While for Mode 2, this position corresponds to the free end corners when
ame=0.01B0.1, and moves to the free edge side when ame ¼ 1:0; and moves to the clamped
side when ame ¼ 10; 100.

Appendix A. Derivation of Eq. (15)

Substituting Eq. (10) into Eq. (9), one obtains

*L ¼
X

m

X
n

X
r

X
s

amnars

Z 1

0

Z 1

0

q2Fm

qx2
q2Fr

qx2
CnðZÞCsðZÞ

�

þ nl2
@2Fm

@x2
FrðxÞCnðZÞ

@2Cs

@Z2

�
þ FmðxÞ

@2Fr

@x2
@2Cn

@Z2
CsðZÞ

�

þ l4FmðxÞFrðxÞ
@2Cn

@Z2
@2Cs

@Z2
þ2ð1� nÞl2

@Fm

@x
@Fr

@x
@Cn

@Z
@Cs

@Z

	
dx dZ
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þ akel b �
X

m

X
n

amnFmðx0ÞCnðZ0Þ

 !2

� o2
X

m

X
n

X
r

X
s

amnars

Z 1

0

Z 1

0

FmðxÞCnðZÞFrðxÞCsðZÞ dx dZþ ameb
2

 !
;

r ¼ 1; 2;y;m; s ¼ 1; 2;y; n; ðA:1Þ

*L ¼
X

m

X
n

X
r

X
s

amnarsfa4mdmrdns þ nl2ðJ20
mrK

02
ns þ J02

mrK
20
ns Þ þ l4b4ndmrdns þ 2ð1� nÞl2J11

mrK
11
ns g

þ akel b2 þ 2b
X

m

X
n

amnFmðx0ÞCnðZ0Þ þ
X

m

X
n

X
r

X
s

amnarsFmðx0ÞFrðx0ÞCnðZ0ÞCsðZ0Þ

 !

� o2
X

m

X
n

X
r

X
s

amnarsdmrdns þ ameb
2

 !
; ðA:2Þ

where

J00
mr ¼

Z 1

0

FmðxÞFrðxÞ dx ¼ dmr;

J11
mr �

Z 1

0

@FmðxÞ
@x

@FrðxÞ
@x

dx ¼
ð3þ amQmÞamQm � amnmmm ðm ¼ rÞ;

4ðAmr � ArmÞ=ða4m � a4r Þ ðmarÞ;

(

J20
mr �

Z 1

0

@2FmðxÞ

@x2
FrðxÞ dx ¼

ð1� amQmÞamQm þ amnmmm ðm ¼ rÞ;

4amQm � 4ðAmr � ArmÞ=ða4m � a4r Þ ðmarÞ;

(

Amr ¼ a3marðamQr � nmarmrÞ; Qm ¼ coth am þ cot am ðA:3Þ

for the integration involving FmðfÞ; where dmr is Kronecker’s delta.

K00
ns �

Z 1

0

CnðZÞCnðZÞ dZ ¼ dns;

K11
ns ¼

Z 1

0

@CnðZÞ
@Z

@CsðZÞ
@Z

dZ ¼
bnf3ð %Qn þ %mn %nnÞ þ bn

%Q2
ng ðn ¼ sÞ;

4ðBns � BsnÞ=ðb
4
n � b4s Þ ðnasÞ;

(

K20
ns �

Z 1

0

@2CnðZÞ
@Z2

CsðZÞ dZ ¼
bnð %Qn þ %mn%nn � bn

%Q2
nÞ ðn ¼ sÞ;

4bnð %Qn þ %nn %mnÞ � 4ðBns � BsnÞ=ðb
4
n � b4s Þ ðnasÞ;

(

Bns ¼ b4nbsð %Qs þ %mn %nsÞ; %Qn ¼ coth bn þ cot bn ðA:4Þ

for the integration involving CnðZÞ:
Employing the Rayleigh–Ritz method,

@ *L

@amn

¼ 0;
@ *L

@b
¼ 0 ðA:5Þ
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yields

@ *L

@amn

¼ 2
X

r

X
s
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@ *L

@b
¼ akel 2b � 2

X
m

X
n

amnFmðx0ÞCnðx0Þ

 !
� o2ð2amebÞ ¼ 0: ðA:7Þ

Appendix B. Nomenclature

anm; b unknown constants in Eq. (10)
D flexural rigidity of plate, ¼ Eh3=12ð1� n2Þ
E Young’s modulus of plate
n The Poisson ratio of plate
r mass density of plate
H width of plate
h thickness of plate
ke attached spring constant
L length of plate
me attached mass
W ðx; y; tÞ displacement of plate

%w non-dimensional displacement of plate, � W=L
(x; y) Co-ordinate system
ðx0; y0Þ location of attached ‘spring–mass’ system
zðtÞ displacement of spring–mass system
ake stiffness ratio parameter, � keL

2=D
am parameter determined by Eq. (12)
ame mass ratio parameter, � me=rHhL
bn parameter determined by Eq. (14)
l aspect ratio of plate, � L=H

FmðxÞ eigenfunction of cantilever beam defined by Eq. (11)
CnðZÞ eigenfunction of free-free beam defined by Eq. (13)
O natural circular frequency
o non-dimensional natural frequency, � O=O0

(x; Z) non-dimensional co-ordinate system
O0 natural frequency of plate, O0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=rhL4

p
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